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Abstract: - Lattice-Boltzmann method (LBM) has been alternatively used to numerically simulate mass transfer 
in porous media. Supercritical fluid extraction (SFE) and biospecific affinity chromatography (BAC) are fixed-
bed processes that may benefit from LBM as their model frameworks are very similar. By allowing the species 
concentration in the fluid phase to vary both in time and along the bed axis, this work has simplified SFE and 
BAC models in order to obtain an identical governing partial differential equation (PDE). Cast in dimensionless 
form, such mutual PDE was numerically solved through either LBM or finite-differences method (FDM). As 
far as false diffusion is concerned, numerical simulations were compared and results encourage the use of LBM 
as a simulation tool to investigate either SFE or BAC processes. 
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1 Introduction 
One may rely on distinct modeling approaches in 
order to simulate transport phenomena, with models 
varying between the following extremes [1]: from 
physics-based to data-driven, from deterministic to 
stochastic, from macroscopic to microscopic, and 
from analytical to numerical. “Combinations” are 
allowed as one may propose, for instance, physics-
based models in either macroscopic, mesoscopic or 
microscopic scales [2]. In effect, one may use any 
scale to simulate transport phenomena within porous 
media [3], which is the case of those involving food 
or bioproducts. Although comprehensive models for 
food or bioprocesses may result complex [4], their 
numerical simulation has continuously increased as 
computational tools have been developed [5] while 
their importance have been recognized [6]. 

With widespread use for food or bioprocesses, 
macroscopic modeling leads to partial differential 
equations (PDEs) for observable properties (e.g. 
species concentration and temperature). As systems 
contain a huge number of particles, such properties 
are interpreted as average values at a point in the 
continuum. On the opposite end, the microscopic 
approach considers each single constituent particle, 
identified together with inter-particle interactions to 
be used in Newton’s law of motion. Referred to as 
molecular dynamics (MD), the resulting simulation 
requires large computational effort [3]. 

Lying between the two later modeling levels, the 
mesoscopic approach deals with global effects of 
particle via a so-called distribution function, which 
attempts to depict the behavior of a relatively small 
particle collection. Based on such function, lattice-
Boltzmann method (LBM) is implemented so that 
one may distinguish it from both MD simulation and 
classical macroscale discretization methods such as 
finite-differences (FDM), finite-volumes (FVM) and 
finite-elements (FEM) [7]. 

In LBM, bulk medium is treated as a collection 
of constituent particles occupying a discrete space 
(lattice sites). During a discrete time lag, particles 
travel between sites along pre-defined directions 
(lattice links). When they arrive at adjacent sites, 
particles mutually collide and are rearranged. Such 
dynamics is described by two LBM steps referred to 
as “streaming” and “collision”. By assuming that 
such dynamics obeys basic conservation principles 
while being isotropic, LBM may properly describe 
and simulate macroscopic medium behavior [8]. 

Being a discrete approach for the kinetic theory, 
LBM has been applied to food and bioprocesses and 
simulated systems have included (but not restricted 
to) flows in porous media, colloidal suspensions, 
polymer solutions and emulsions [9]. The present 
work aims at LBM simulation of biospecific affinity 
chromatography (BAC) as well of supercritical fluid 
extraction (SFE) in fixed bed equipment. Even when 
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model simplifications are evoked, inherent hurdles 
still justify the use of numerical methods to simulate 
either BAC or SFE processes. 
 
 

2 Theory 
 
2.1 Models for BAC and SFE processes 
Fixed-beds considered in this work are cylinders of 
inner radius R and length L, either horizontally or 
vertically oriented as shown in Fig. 1. Bed inlet is at 
z = 0 while outlet is at z = L, with respect to fluid 
flow. In BAC the later is the percolating solution 
whereas in SFE it refers to the supercritical fluid. 
Porosity ε is allegedly uniform throughout the bed. 
 
 

 

Fig. 1. Cylindrical coordinates (r-z) for fixed-beds 
considered in the present work. 

 
 

If the volumetric flow rate V&  remains constant, 

the interstitial velocity )/( 2RVvz επ= &  is uniform. In 
model equations, one may use the so-called seepage 

velocity )/(~ 2RVvz π= &  instead [10]. The idea when 

assessing velocities zv~  and vz is depicted in Fig. 2, 

being 2RA π=  bed total cross-sectional area while 
AA ε=f  and AA )1(s ε−=  are those occupied by 

fluid and solid phases, respectively. 
 
 

(a) 

 

 (b) 

 

Fig. 2. Evaluation of (a) seepage velocity AVvz /~ &=  

and (b) interstitial velocity )/(/ f AVAVvz ε== && . 

BAC models have evoked uniform fluid flow, 
sorption-desorption kinetics and species transport by 
convection and/or diffusion [11]-[17]. Those models 
have been of first-order with respect to the spatial 
dependence so that species concentrations may vary 
along a given coordinate z (i.e., fixed-bed axis), 
apart from depending on time t. Such concentrations 
have then been modeled as φ = φ(z,t) and θ = θ(z,t) 
in fluid and solid phases, respectively, and related 
governing PDEs have been expressed as: 
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where Dz is species axial diffusivity, k1 and k2 are 
respectively sorption and desorption coefficients 
and θmax is the maximum adsorption capacity of the 
chromatographic column. Giving the rate at which 
species are adsorbed from fluid to solid phase, term 
r&  behaves as a sink in Eq. (1) and as a source in Eq. 
(2). As initial conditions, one may prescribe: 
 
 at t = 0:  φ = 0  and  θ = 0 (3) 
 
while boundary conditions might be: 
 

 at z = 0:  φ = φin    ;    at  z = L:  0=
∂
φ∂
z

 (4) 

 
being φin ≠ 0 a known inlet concentration. 

SFE models have equally evoked uniform flow, 
sorption-desorption kinetics and species transport by 
convection and/or diffusion. Although the later has 
been neglected [18]-[22], diffusion can indeed be 
influential inside large equipments, thus justifying 
its modeling [23]. Like time-dependent 1-D BAC 
models, species concentrations in SFE have been 
assumed as φ = φ(z,t) and θ = θ(z,t) respectively in 
fluid and solid phases, so that governing PDEs have 
been expressed as: 
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While vz, Dz and ε have the same meaning as in 
BAC equations, kP is a partition coefficient and ti is 
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an intra-particle diffusion reference time evaluated 
from particle features, namely, shape coefficient µ, 
characteristic length lp and intra-particle diffusivity 
Di. If θmax is bed maximum extraction capacity, one 
may impose the following initial conditions: 
 
 at t = 0:  φ = 0  and  θ = θmax (7) 
 
while boundary conditions can be: 
 

 at z = 0:  φ = 0    ;    at  z = L:  0=
∂
φ∂
z

 (8) 

 
While BAC and SFE are distinct processes, their 

model frameworks are quite similar to each other. 
As one may realize, governing PDEs for fluid-phase 
concentration φ are basically the same, apart from 
the fact that the sorption-desorption term r&  refers to 
different PDEs for the solid-phase concentration θ. 
Aiming at preliminary LBM simulations for BAC 
and SFE processes, this work attempts to profit from 
the aforesaid similarity between model equations. 
 
 
2.2 LBM fundamentals 
The underlying concept of LBM is to replace the 
knowledge about each constituent particle (in terms 
of position and velocity) by a suitable description of 
their overall effect through a distribution function 

),,( tcrff
rr= . Obeying Boltzmann’s equation, such 

function f gives the probability of finding, at time t, 
particles about position r

r
 with speeds within c

r
 and 

cc
rr

d+ . Once f becomes known, one may then 
assess macroscopic properties of interest [9]. In the 
absence of external forces, Boltzmann’s equation is 
written as the following advection equation with a 
source (or sink) term: 
 

 ( )ffffc
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where the collision operator Ω = Ω(f) gives the 
variation rate of function f due to collisions between 
particles. In the above equation, the so-called BGK 
(Bhatnagar-Gross-Krook) approach was evoked so 

as to linearize such operator as τ−=Ω /)()( eq fff , 

where τ is referred to as relaxation time and feq is the 
local equilibrium distribution function [24]. 

In LBM, Eq. (9) is discretized along pre-defined 
lattice links (directions). Distances ∆zk separating 
adjacent lattice sites are discrete (subscript k refers 
to a given link) and so is time, so that ∆t is a discrete 
advancing time step. Lattice arrays are identified as 

DnQm, where n is the problem dimension (e.g., n = 
1 for 1-D problems) while m is the number of lattice 
links (= number of distribution functions fk to be 
solved). Entailing a central site and two neighbors, 
Fig. 3 sketches a 1-D lattice array known as D1Q3, 
which is similar to D1Q2. Through the lattice links 
connecting the central site to its neighbors, particles 
may then “stream” with either forward or backward 
velocities, zcc ˆ1 +=r

 or zcc ˆ2 −=r
 (c = ∆z/∆t = lattice 

speed, ẑ  = unit vector), as Fig. 3 suggests. Central 
velocity is null, i.e., c0 = 0. 
 
 

 

Fig. 3. Either D1Q2 or D1Q3 lattice arrays for one-
dimensional (1-D) LBM simulations. 

 
 

Two usual 2-D lattice arrays are shown in Fig. 4. 
Including the null velocity at the central site, D2Q5 
array comprises 5 lattice speeds kc

r
 (k = 0, 1, 2, 3, 4) 

but it cannot be used for flow simulations [3] so that 
D2Q9 array should be used instead, which entails 5 
lattice speeds kc

r
 (k = 0, 1, ... , 7, 8). 

 
 

 

(a) (b) 

Fig. 4. (a) D2Q5 and (b) D2Q9 lattice arrays for 
two-dimensional (2-D) LBM simulations. 

 
 

With solid lines representing lattice links, Fig. 5 
shows two common 3-D arrays: D3Q15 and D3Q19. 
There are 15 lattice speeds kc

r
 (k = 0, 1, ... , 13, 14) 

in the former and 19 lattice speeds kc
r

 (k = 0, 1, ... , 
17, 18) in the later. 
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(a) (b) 

Fig. 5. (a) D3Q15 and (b) D3Q19 lattice arrays for 
three-dimensional (3-D) LBM simulations. 

 
 

By writing Eq. (9) for a direction k at a position z 
and time t, one then obtains 1-D lattice-Boltzmann 
equation under BGK approach, namely: 
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where ck = ∆zk/∆t (∆zk = ±∆z, depending on the 
streaming direction). For D1Q3 arrays, Eq. (10) is 
written for k = 0, 1 and 2 (i.e., for f0, f1 and f2) while 
for D1Q2 arrays it is only written for k = 1 and 2 as 
function f0 (k = 0) is disregarded. 

Space-time discretization of Eq. (10) renders the 
following algebraic equation (the order of left-hand 
side terms has been changed for aesthetic purposes): 
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By introducing the so-called relaxation parameter ω 
= ∆t/τ, the previous equations is rewritten as: 
 

 ),(),(]1[),( eq tzftzfttzzf kkkk ω+ω−=∆+∆+  (12) 
 
whose evolution is carried out in two steps [3]. In 
the collision step (= time evolution), distribution 
functions fk for each direction k are updated at each 
lattice site from instant t to t + ∆t as: 
 

 ),(),(]1[),( eq tzftzfttzf kkk ω+ω−=∆+  (13) 
 
In the streaming step (= spatial evolution), collision 
results are transported to adjacent sites according to: 
 

 ),(),( ttzfttzzf kkk ∆+=∆+∆+  (14) 
 

In LBM, distinct systems can be simulated by 
suitably handling the relaxation parameter ω and the 
equilibrium distribution function feq. While the later 
governs the transport phenomenon (i.e., of mass, 
momentum or energy), the former dictates the 
related coefficient (i.e., mass diffusivity, kinematic 
viscosity or thermal diffusivity). 

For mass transport, diffusivity Dz depends on ω 
as well as on the so-called lattice sound speed cs as: 
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where the so-called lattice sound speed is assessed 
as cs = c = ∆z/∆t for both D1Q2 and D1Q3 arrays 
[3]. For either D2Q4 or D2Q5 arrays it becomes 

2/s cc =  and for D2Q9, D3Q15 or D3Q19 arrays 

it is 3/s cc = . For fluid flow problems, expression 

for kinematic viscosity υ is similar to the previous 
equation by simply replacing Dz for υ whereas for 
heat transfer one must then replace Dz by thermal 
diffusivity α [3],[9]. 

As cited, the equilibrium distribution function feq 
is defined according to the transport phenomenon to 
be simulated. Being φ the transported quantity, the 
following expression applies for relatively low fluid 
flow velocities v

r
 [3],[9]: 
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wk being weighting factors satisfying the condition 
∑wk = 1. In the D2Q1 array, for example, w0 = 0 
refers to the central site while w1 = w2 = ½ refers to 
each streaming direction (Fig. 3). 

Last but not least, at any position z and instant t, 
one may retrieve the transported quantity φ = φ(z,t) 
from the distribution functions as [3],[9]: 
 
 ∑=φ

k
k tzftz ),(),(  (17) 

 
 

3 Numerical method 
 
3.1 Dimensionless formulation 
One may benefit from the similarity between BAC 
and SFE model equations to implement preliminary 
LBM simulators. In view of that, this work applies 
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LBM only to the species concentration φ in the fluid 
phase so that simplified forms of Eqs. (1) and (5) 
are considered by ignoring the source or sink term 
r& . Hence, an identical governing PDE for φ is then 
obtained for both BAC and SFE, namely: 
 

 2
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Aiming at a dimensionless formulation of such 

“mutual” equation, dimensionless variables for the 
fluid-phase species concentration φ, time t and axial 
coordinate z are introduced as: 
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where φref ≠ 0 can be identified to any reference 
concentration while ∆t and ∆z were introduced in 
the previous section. By recalling that cs = c = ∆z/∆t 
and vz = v for 1-D problems, Eq. (18) can then be 
cast into the following dimensionless form: 
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where Ma and Pem are lattice-based Mach and mass-
transfer Péclet numbers, respectively defined as: 
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In order to solve Eq. (20), one may impose the 

following initial condition on Φ: 
 
 at T = 0:  Φ = 0 (22) 
 
as well as the following boundary conditions: 
 
 at Z = 0 (inlet):  Φ = 1 (23) 
 

 at Z = Nz = L/∆z (outlet):  0=
∂
Φ∂
Z

 (24) 

 
where Nz+1 is the number of lattice sites, end points 
included. In Eq. (23), reference concentration was 
identified to the non-null inlet concentration (φref = 
φin) in line with BAC. Without loss of generality, 
one may instead identify it to the non-null maximum 
concentration (φref = φmax) in line with SFE. 
 

 
3.2 Preliminary LBM for BAC and SFE 
In order to implement LBM simulators for BAC and 
SFE, one actually needs two distinct distribution 
functions fk(z,t) and sk(z,t), “sharing” the same lattice 
and respectively referring to species concentration 
in fluid and solid phases. Given the underlying 
physics of governing PDEs, Eqs. (1), (2), (5) and (6) 
(namely, diffusion-convection in fluid phase and 
stationary solid medium), the following equilibrium 
distribution functions fk and sk can be adopted [3]: 
 

 [ ]cvtzwtzf zkk ±φ= 1),(),(eq  (25) 
 

 ),(),(eq tzwtzs kk φ=  (26) 
 
where the sign of vz/c depends on the streaming 
direction. In line with the lattice array (but always 
fulfilling the condition ∑wk = 1), weighting factors 

wk are the same for eq
kf  and eq

ks  [3]. Yet, relaxation 

factors ωf and ωs are different for each phase: 
 

 fluid phase (Dz ≠ 0):  
2
11

f

+
∆

=
ω zc

Dz  (27) 

 
 solid phase (Dz = 0):  2s =ω  (28) 

 
As a first step towards LBM simulations of BAC 

and SFE, LBM was applied only for the fluid-phase 
concentration, in view of the “common” governing 
PDE, Eq. (20). D1Q2 array was employed so that 
weighting factors are w1 = w2 = ½. With respect to 
the equilibrium distribution function and to the 
dimensionless species concentration, the following 
expressions hold (for k = 1 or 2): 
 

 [ ]Ma1),(),(eq ±Φ= TZwTZf kk  (29) 
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With the help of Eqs. (21) and (27), one may write 
the relaxation factor as: 
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With respect to the initial condition (at T = 0), 

one may evoke Eq. (22) so as to impose  
 
 )0,()0,( 11 ZwZf Φ=  (32) 
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 )0,()0,( 22 ZwZf Φ=  (33) 
 
At bed inlet, one obtains the boundary condition for 
f2(0,T) via streaming from the adjacent site f2(1,T), 
thus f1(0,T) remains the only unknown. By imposing 
Φ(0,T) = 1 as given by Eq. (23), one may use Eq. 
(30) to yield the following condition for f1 at Z = 0: 
 
 ),0(1),0( 21 TfTf −=  (34) 
 
Approximating ∂Φ/∂Z = 0 in Eq. (24) via first-order 
finite differences, the following boundary conditions 
are obtained for f1 and f2 at bed outlet (Z = Nz): 
 
 ),1(),( 11 TNfTNf zz −=  (35) 
 
 ),1(),( 22 TNfTNf zz −=  (36) 
 
 

4 Results and discussion 
Relying on BGK-D1Q2 approach, the present work 
programmed LBM in Fortran (standard 90/95) so as 
to simulate time-dependent 1-D species transfer as 
governed by Eq. (20) subjected to Eqs. (22), (23), 
(24). Resulting from the numerical implementation 
of streaming and collision steps, LBM codes follow 
those encountered in [4] for transport phenomena of 
similar nature. The proposal here is to check out the 
proper implementation of LBM codes as regards to 
species concentration in fluid phase. Parameter Nz 
was set to yield 151 sites (end points included). 

For the sake of comparison, a finite-differences 
method (FDM) code was equally implemented with 
151 grid points (end points included). With respect 
to how Eq. (20) is discretized in such FDM code, it 
is worth remarking that: 
• Time derivative ∂Φ/∂T was discretized via first-

order forward differences while explicit 
formulation was used for the remaining terms. 
Instabilities were indeed observed for ∆T > 0.3 
so that such scheme should be replaced by either 
a fully or partially implicit scheme [25],[26]. In 
contrast, no restrictions on the advancing time 
step DT must be imposed for LBM simulations. 

• Convective term ∂Φ/∂Z was discretized by 
means of upwind scheme, which may yield false 
(numerical) diffusion. Particularly noted ahead 
for lower Dz, such effect may explain why 
gradients in FDM profiles are “smoother” when 
compared to LBM counterparts. 
Profiles for Φ simulated at T = 600 via LBM and 

FDM are compared in Fig. 6 for some distinct Pem 

values with Ma = 0.1. Bearing in mind, for instance, 
a bed length L = 0.075 m and an interstitial velocity 
vz = 0.0002 m/s (i.e., laboratory scale), such Pem and 
Ma values then yield ∆z = 0.0005 m and ∆t = 0.25 s 
(thus, T = 600 renders t = 300 s) while they may 
refer to the following values for species diffusivity 
Dz and relaxation factor ωf: 
• Pem = 0.8 ⇒ Dz = 1.25×10−6 m2/s and ωf = 4/7; 
• Pem = 4.0 ⇒ Dz = 2.50×10−7 m2/s and ωf = 4/3; 
• Pem = 8.0 ⇒ Dz = 1.25×10−7 m2/s and ωf = 8/5. 
(Many other combinations are obviously feasible by 
assuming distinct values for L and vz). 
 
 

Ma = 0.1 ,  no source / sink
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Fig. 6. LBM and FDM simulations of Φ profiles at 
T = 600 using Ma = 0.1 (fixed) and Pem = 0.8, 4 or 

8: diffusive-convective transport. 
 
 

Despite LBM and FDM simulators were able to 
reproduce expected Φ profiles, differences between 
numerical results become apparent as Pem increases 
or, in view of Eq. (21), as vz (convection) increases 
with regard to Dz (diffusion). One might assign such 
differences to false diffusion in FDM. 

In effect, further comparisons between LBM and 
FDM simulations were carried out by neglecting the 
convective term in Eq. (20), i.e., by setting Ma = 0. 
A diffusion-dominant PDE for the dimensionless 
concentration Φ in the fluid phase is obtained: 
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2

mPe
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ZT ∂
Φ∂=

∂
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Moreover, by imposing vz = 0 in Eq. (29), fluid-
phase equilibrium distribution functions become 
analogous to solid-phase counterparts, Eq. (30). One 
may then write (in dimensionless form): 
 

 2,1,),(),(eq =Φ= kTZwTZf kk  (38) 
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Also subjected to boundary and initial conditions 
as given by Eqs. (32), (33), (34), (35) and (36), Eq. 
(37) was solved via LBM and FDM. Resulting Φ 
profiles simulated at T = 600 are compared in Fig. 7. 
In the absence of the convective term (and of false 
diffusion), it is worth observing that LBM and FDM 
profiles are practically coincident for each Pem. 
 
 

Ma = 0 ,  no source / sink
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Fig. 7. LBM and FDM simulations of Φ profiles at 
T = 600 using Ma = 0 (fixed) and Pem = 0.8, 4 or 8: 

diffusion-only (convective transport neglected). 
 
 

Additional comparisons between LBM and FDM 
simulations were accomplished by adding a constant 
term R&  into the right-hand side of Eq. (37) as: 
 

 
ref

2

2

m

,
Pe

1

φ
∆=+

∂
Φ∂=

∂
Φ∂ tr

RR
ZT

&
&&  (39) 

 
In view of Eqs. (1) and (5), one may interpret it as 
an attempt to account for the presence of the solid 
phase. From the fluid phase standpoint, such new 
term in Eq. (39) behaves as a source in SFE (0>R& ) 
or as a sink in BAC ( 0<R& ). In LBM, one inserts 
sources or sinks in the right-hand side of Eq. (9) so 
that the collision step is extended to [3]: 
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where weighting factors are again w1 = w2 = ½. 

Also subjected to boundary and initial conditions 
as imposed by Eqs. (32), (33), (34), (35) and (36), 
with 01.0=R&  as a source term, Eq. (39) was solved 
via LBM and FDM. Advancing time steps were ∆T 
= 1.0 for LBM and ∆T = 0.3 for FDM so as to avoid 
numerical instabilities. Simulated Φ profiles at T = 
600 are shown in Fig. 8 where one notes that LBM 

and FDM results are practically coincident for each 
Pem. While it is worth recalling that Eq. (39) lacks a 
convective term (thus false diffusion is absent), one 
verifies that both simulators were able to reproduce 
the expected influence of the source term. 
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Fig. 8. LBM and FDM simulations of Φ profiles at 
T = 600 using Ma = 0 (fixed) and Pem = 0.8, 4 or 8: 

diffusion-only with source term. 
 
 

In order to examine prospective false diffusion 
effects together with those from the source term, 
further comparisons between LBM and FDM were 
carried out by solving the following PDE for the 
dimensionless fluid-phase concentration: 
 

 R
ZZT

&+
∂

Φ∂=
∂
Φ∂+

∂
Φ∂

2

2

mPe

1
Ma  (41) 

 
Such previous PDE becomes a dimensionless form 
of either Eq. (1) or (5) provided that the source or 
sink term R&  is suitably modeled in line with BAC 
or SFE processes (which evokes the solution of the 
related PDE for the solid-phase concentration). 

Also subjected to the same boundary and initial 
conditions, Eqs. (32), (33), (34), (35) and (36), Eq. 
(41) was solved with 01.0=R&  as a source term and 
∆T = 1.0 and ∆T = 0.3 as advancing time steps for 
LBM and FDM, respectively. Simulated Φ profiles 
at T = 600 are shown in Fig. 9, where false diffusion 
effects in FDM results can be once again identified, 
yet relatively to minor extent if compared to those in  
Fig. 6. As expected, false diffusion effects become 
more evident for higher Pem (higher convection in 
relation to diffusion), together with the “sweeping” 
effect of the percolating fluid flow, when compared 
to counterpart profiles in Fig. 8. 
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Ma = 0.1 ,  source: R = 0.01
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Fig. 9. LBM and FDM simulations of Φ profiles at 
T = 600 using Ma = 0.1 (fixed) and Pem = 0.8, 4 or 

8: diffusion-convection with source. 
 
 

5 Concluding remarks 
As far as species concentration in the fluid phase is 
concerned, time-dependent 1-D equations for BAC 
or SFE processes in fixed beds are so similar that 
one is able to arrive at the same governing PDE by 
neglecting each related sorption-desorption term. 
Profiting from such likeness, this work implemented 
preliminary LBM simulators for either BAC or SFE, 
by starting from such mutual equation and casting it 
into dimensionless form. FDM simulators were also 
implemented for comparison purposes in terms of 
numerical validity and performance. 

Dimensionless concentration profiles simulated 
through LBM and FDM were practically coincident 
as regards to the common governing PDE as well as 
with respect to variations of it, namely, diffusion-
dominant scenario (i.e., convection neglected) and 
inclusion of a source term. It is then believed that 
differences noted between LBM and FDM profiles 
can be assigned to false (i.e., numerical) diffusion 
effects attributable to the upwind (i.e., first-order) 
discretization of convective term in FDM. Besides, 
LBM simulations proved to be exempt from the 
well-known numerical stability criteria that must be 
obeyed by FDM simulations when the later rely on 
an explicit scheme with respect to time. 

Those previous results are encouraging having in 
mind the ability to deal with more comprehensive 
simulations of both BAC and SFE processes in fixed 
beds. A primary objective is to widen each model 
framework in order to include the PDE for species 
concentration in the solid phase. Other extensions 
include 2-D (or 3-D) domains and the inclusion of 
additional transport phenomena (e.g., heat transfer 
and/or bed hydrodynamics). 
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Nomenclature 
A cross-sectional area (m2) 
c lattice speed (m⋅s−1) 
D species (mass) diffusivity (m2⋅s−1) 
f distribution functions (dimensionless) 
kP partition coefficient (dimensionless) 
k1 sorption constant (suitable units) 
k2 desorption constant (suitable units) 
L length of the fixed bed (m) 
lP particle characteristic length (m) 
Ma Mach number (dimensionless) 
Nz last site/grid point index (dimensionless) 
Pem (mass) Péclet number (dimensionless) 
R inner radius of the fixed bed (m) 
R&  dimensionless source or sink term 
r lattice position (m) 
r&  source or sink term (suitable units) 
s distribution function (dimensionless) 
T dimensionless time 
t time (s) 
V&  volumetric flow rate (m3⋅s−1) 
v fluid velocity (m⋅s−1) 
w weighting factors (dimensionless) 
Z dimensionless axial coordinate 
z axial coordinate of the fixed bed (m) 
 
Greek symbols 
ε fixed bed porosity (dimensionless) 
Φ dimensionless fluid-phase concentration 
φ fluid-phase concentration (suitable units) 
µ shape coefficient (dimensionless) 
θ solid-phase concentration (suitable units) 
τ relaxation time (s) 
Ω collision operator (s−1) 
ω relaxation parameter (dimensionless) 
 
Subscripts and superscripts 
eq equilibrium distribution function 
f fluid phase 
i intra-particle diffusion coefficient/time 
in bed inlet 
k lattice direction 
max maximum adsorption/extraction capacity 
ref non-null reference concentration 
s solid phase or lattice sound speed 
z axial coordinate of the fixed bed 
0 central lattice site 
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1 forward (1-D) lattice direction ( ) 
2 backward (1-D) lattice direction ( ) 
~ seepage velocity 
^ unit vector 
 
Acronyms 
BAC  Biospecific affinity chromatography 
D*Q*  Lattice arrangements (arrays) 
FDM  Finite-difference method 
LBM  Lattice-Boltzmann method 
SFE  Supercritical fluid extraction 
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